Let $A$ be an $n \times n$ (square) matrix. $A$ is invertible if there exists $n \times n$ matrix $B$ such that

$$ AB = BA = I_n $$

If it exists, $B$ is unique and we say $B = A^{-1}$

Conditions for Invertibility

Invertible matrices $A$ and their corresponding transformations $T_A$ must satisfy these conditions

2x2 Matrix: Determinant and Inverse

Determinant of a 2x2 matrix is

$$ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc $$

and the inverse is

$$ \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} $$